ARGA: Approximate Reuse for GPGPU Acceleration

Daniel Peroni, Mohsen Imani, Hamid Nejatollahi®, Nikil Dutt’, Tajana Rosing
University of California San Diego, La Jolla, CA, 92093, USA
tUniversity of California Irvine, Irvine, CA, 92697, USA

ABSTRACT

Many data-driven applications including computer vision, speech
recognition, and medical diagnostics show tolerance to error during
computation. These applications are often accelerated on GPUs, but
high computational costs limit performance and increase energy
usage. In this paper, we present ARGA, an approximate comput-
ing technique capable of accelerating GPGPU applications. ARGA
provides an approximate lookup table to GPGPU cores to avoid re-
computing instructions with identical or similar values. We propose
multi-table parallel lookup which enables computational reuse to
significantly speed-up GPGPU computation by checking incoming
instructions in parallel. The inputs of each operation are searched
for in a lookup table. Matches resulting in an exact or low error are
removed from the floating point pipeline and used directly as output.
Matches producing highly inaccurate results are computed on exact
hardware to minimize application error. We simulate our design by
placing ARGA within each core of an Nvidia Kepler Architecture
Titan and an AMD Southern Island 7970. We show our design im-
proves performance throughput by up to 2.7 x and improves EDP by
5.3x for 6 GPGPU applications while maintaining less than 5% out-
put error. We also show ARGA accelerates inference of a LeNet NN
by 2.1x and improves EDP by 3.7 x without significantly impacting
classification accuracy.

CCS CONCEPTS

* Computer systems organization — Multicore architectures; ©
Computing methodologies — Machine learning approaches.

KEYWORDS

Approximate computing, GPGPU, Floating point unit, Hardware
Acceleration

ACM Reference Format:

Daniel Peroni, Mohsen Imani, Hamid Nejatollahii Nikil DuttT, Tajana
Rosing. 2019. ARGA: Approximate Reuse for GPGPU Acceleration. In
The 56th Annual Design Automation Conference 2019 (DAC '19), June
2-6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3316781.3317776

1 INTRODUCTION

In recent years the amount of data produced by devices has risen
exponentially. The world produces 2.5 quintillion bytes of data per
day and over 90% of all data was produced in the last 2 years [1].
The rate of data production is outpacing our ability to process it
efficiently on current hardware [2]. Many modern applications in-
cluding computer vision, machine learning, web searches, speech

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. .. $15.00
https://doi.org/10.1145/3316781.3317776

recognition, and medical diagnostics are highly parallelizable and
can be sped up through the use of GPU computing. Running these
applications on GPUs can be power intensive, so novel architectures
are needed to optimize performance and reduce energy use.

A notable attribute of the previously mentioned applications is the
fact they often do not require perfect accuracy in their results [3-5].
In multimedia applications, the output can have small audio or vi-
sual artifacts without being noticeable to a human user. Web search
algorithms often need to provide the top best matches, but not neces-
sarily in an exact order. NNs and other machine learning algorithms
can tolerate small errors without significantly impacting the overall
classification accuracy [6—11]. Approximate computing is a method
of exploiting error tolerance to trade application accuracy for energy
savings and performance improvements. Within machine learning,
neural network based solutions have proven to be state of the art
for many of these applications [12, 13]. In heterogeneous systems,
GPUs are capable of accelerating NNs orders of magnitude faster
than CPUs. Despite the performance improvements, neural networks
are growing in depth and require further hardware acceleration [14].
Faster and more energy efficient hardware is needed to train and
deploy these networks effectively.

Associative memories or lookup tables can be used to reduce
the energy consumption of parallel processors by enabling com-
putational reuse [15]. Associative memories are capable of storing
frequent arithmetic operations and reusing them instead of comput-
ing the value. Applications involving a high percentage of temporal
locality can utilize this memory to eliminate redundant computation.
Prior work extended computational reuse to approximate computing
by enabling inexact matching in the associative memory [15-17].
Previous approximate approaches using associative memory have
several notable flaws. They place the memory within the floating
point unit (FPU) pipeline and perform searches sequentially. This
links them to the FPU pipeline stages and prevents them from accel-
erating applications, only providing energy savings. They also only
consider individual threads, rather than warps as a whole. GPUs
issue instructions in groups of threads called a warp. A single lookup
miss in one thread of the warp prevents the entire warp from being
accelerated.

In this paper, we present ARGA, an approximate computing
technique capable of accelerating GPGPU applications. We place
Content Addressable Memory (CAM) blocks in GPGPU cores to
exploit temporal locality of the applications and avoid recomput-
ing similar values. Searches from the table resulting in an exact or
low error match are removed from the floating point pipeline and
used directly as output. Highly inaccurate match results are com-
puted on exact hardware to minimize application error. We propose
multi-table parallel lookup which enables computational reuse to
significantly speed-up GPGPU computation by checking up to 5
incoming instructions in parallel. We simulate our design by placing
ARGA within each core of an Nvidia Kepler Architecture Titan and
an AMD Southern Island 7970. We show our design improves per-
formance throughput by up to 2.7 x and improves EDP by 5.3 for
6 GPGPU applications while maintaining less than 5% output error
compared to unmodified GPUs. We also show ARGA accelerates
inference of a LeNet NN by 2.1x and improves EDP by 3.7 x.

2 RELATED WORK

Hardware-based approximate computing can be implemented in a
variety of ways including voltage overscaling, approximate arith-
metic units, and lookup based approximate matching. Voltage over-
scaling (VOS) reduces the voltage for a circuit until timing errors
start to appear [15, 18]. The benefits of VOS can be improved by
designing circuits with reduced critical paths and better-scaling prop-
erties [19, 20]. The exponential rate errors increase as voltage de-
creases and significant transistor leakage currents limits VOS usage.
Alternatively, approximate arithmetic units can be used to improve
performance. These include approximate adders, multipliers, and
dividers which trade precision for energy savings and performance
improvements [3, 5, 21, 22]. Approximate computational units show
difficulty controlling error, often requiring expensive post-processing
steps to correct.

Lookup-based approximation avoids computation entirely by
reusing previously computed values. Ternary content addressable
memories (TCAMs) can be utilized for approximate computational
reuse for GPGPU applications [15, 16, 23, 24]. Associative mem-
ory is placed adjacent to FPUs and stores input and output values
from previously computed operations which are searched against
incoming inputs. The memory returns the nearest distance match
from each search, allowing power savings in applications with many
repeated calculations. Developers specify regions of their programs
able to tolerate approximation, then profile the code to find the most
commonly occurring operations. The profiled values are stored in
memory prior to runtime and remain static as the program runs.
The authors in [15] proposed a configurable memory which applies
VOS to non-volatile associative memory to relax computation and
to trade output accuracy for energy savings. Work in [23] designed
a novel associative memory based bloom filters. Machine learning
algorithms and neural networks have proven to be resilient to some
level of reduced precision. Networks can be quantized or use FP16
precision to improve performance [25, 26]. Prior works utilized
TCAMs to accelerate the NN computation [27]. The networks are
pre-profiled for the most frequently occurring operations prior to
runtime. During training, the most common values are searched
and the closest matches used instead of computing on hardware.
Existing work suffers from low hit rates because the static values
cannot adapt to variations in running applications. Previous work
in memory based computation has several problems. They are tied
to the pipeline stage of the floating point unit which prevents them
from accelerating application. In addition, they either use static ta-
bles which produce low hit rates and require large sizes. Associative
memory can be updated through online training [28], however, the
process has overhead penalties and suffers from energy costs.

We attempt to address prior works’ shortcomings to improve
performance of applications. Our design, ARGA, is a dynamically
updating lookup table capable of accelerating GPGPU applications
and reducing energy consumption. Unlike prior work, ARGA is
capable of searching for multiple incoming operations in parallel per
core to improve application performance and reduce energy usage.
ARGA provides warp level acceleration by identifying and avoiding
situations when a small number of threads create a bottleneck.

3 ARGA DESIGN

3.1 Motivation and Overview

A wide range of GPGPU applications, such as machine learning and
multimedia, can tolerate some error in their output. At the same time,
the operations in these applications show high temporal locality with
many identical or similar values being recomputed. Figure 1 shows
a breakdown of arithmetic operations computed for the ImageNet

[mOperation Frequency O Operation Redundancy

10020
80%
60%

= —

ADD MUL MAC

Figure 1: Frequency of operations and percentage of redundant
computations in Rodinia [29] backpropagation benchmark

Existing Limitations ARGA Solutions

1
|
No :
—» Computation —L3
Acceleration ®

Lookup Table
in FPU Pipeline

Multi Lookup

Table In Parallel Speedup

1
}
1
}
‘Warp ! Warp Wrap
1

WD LOSISED g Bottleneck ® Passthrough Balance

0O 0

Low Hit-Rate D ic Tabl High
. d Effici ynamic Table 1g
Static Table —» an ®|clency I with LRU Hitrate

Figure 2: Limitations of the existing approaches compared to

ARGA.
Kepler GPU |/ Streaming Multiprocessor | Dispatch Port
; (SMX) | [Operand Collector |
SMX | [SMX \ Instruction Cache i 5
Warp Warp ARGA <
Scheduler Scheduler =l
[Dispatch | [Dispatch | 32 bit I;P unit] ©
‘ Register File ‘ Result Buffer
L2 Cache ﬁﬁ ﬁ ﬁﬁﬁ_ﬁ ; Dispatch Port g
H /| [Operand Collector | O
s o)} | 000 IO :
3 : A i 2
00 - 000 :
\ 64 bit FP Unit K
Shared Memory/L1 Cache |* 'g
Read-Only Data Cache Result Buffer =]

Figure 3: Implementation of ARGA alongside FPU within
Nvidia Kepler Titan GPU

backpropagation application from the Rodinia [29] benchmark suite.
95% of the ALU operations involve an add, multiply, or multiply-
accumulate, so we focus our efforts on reducing their usage. For each
of these operations, we also examine redundancy of the computation.
An operation is considered redundant if it is identical or highly simi-
lar to a previous calculation. For example, if an FPU first computes
2.0x2.0 followed by 2.02x2.0, the second would be redundant. 70%
of the multiplier and 64% of the MAC operations’ computed results
in the backpropagation application are within 5% of a value from
an operation computed in the last 16 instructions. This high level of
redundancy can be exploited to improve performance.

Small lookup tables placed adjacent to each FPU avoid recalcu-
lating values by storing the most common inputs and outputs for
each application [15, 16]. However, the existing approaches have
three main issues as listed in Figure 2: (i) these methods only pro-
vide energy savings and fail to accelerate applications. (ii) They
also fail to account for matching at a warp level. GPU instructions

FPU Pipeline Stage

Bigi-1d

Cleck Gatmg

Input Buffer

| |

Result Buffer

(a) Conventional Apparoch

Input Queue

Result Buffer|

FPU Pipeline Stage
1 -~
i

G-

Clock Gatmg

Stage j

Ops;

ST A 4\—:‘7 QApprox T Passthrough
1151 =S ! *;l
slg] |
= : I
e ittt et Rewrite |
Clock Gating LHA | Passthrough

I control

(b) Proposed ARGA Architecture

Figure 4: (a) Computational reuse in conventional FPU within
GPU (b) ARGA architecture integrated lookup tables with
FPU.

within a warp execute in lockstep, which means any acceleration
must maintain instruction adherence. (iii) These designs utilize static
lookup tables which require applications be pre-profiled to identify
the most frequent operations prior to runtime. In addition, static
tables result in low lookup table hit rate in practice. In this paper,
we propose several novel approaches to address all major practical
issues in approximate computational reuse. For the first time, we
propose the idea of Multi-Table Parallel Lookup in order to acceler-
ate GPGPU application, rather than just saving energy. We propose
Warp Passthrough to avoid lockstep warps from being bottlenecked
by a small neck of threads producing poor approximate results. Fi-
nally, we propose a dynamic table and a light-weight policy which
enable lookup table values to be updated at runtime based on the
local data. In the following section, we explain the details of each
proposed approach.

3.2 Multi-Table Parallel Lookup

A critical drawback of prior lookup based designs is the lack of
application acceleration. Placing a lookup table within the FPU saves
power, but is tied to the pipeline [30]. Approximated operations are
clock gated to save power, but still, take space in the pipeline. Only
one operation is searched for at a time, rather than checking several
operations simultaneously. We place multiple tables outside the
FPU to check several instructions concurrently. For each search that
returns a usable result, the operation is removed from the input buffer
avoiding the FPU altogether and accelerating the application.

We integrate ARGA into an Nvidia Titan GPU based on the
Kepler GK110 architecture as shown in Figure 3. The GPU has 14
streaming multiprocessors (SMX), each with 192 single precision
and 64 double precision floating point units. We place ARGA within
each GPU core immediately after the operand collector, ensuring the
values are available for lookup. To build the lookup tables for ARGA,
we use CAM, proposed in [30]. ARGA provides nearest distance
matches using the inputs from each arithmetic operation run on the
GPU core. The distance between the match and the input values
determines the output error. Better matches have a lower error, while
further distances lead to worse approximation. To control application
accuracy, the operations are split between using results from ARGA
and running on exact FPU based on the match distance. Users set the
maximum allowed error for individual matches to trade off between

Poor Match with Computed on

‘ D Good Match D Poor Match

passthrough Exact FPU
Instructions Instructions
Lookup Lookup

C1 joes| €9 |C10|C11|C12 c13...

C1 loes| C9 c1o c11 c12 c13 ...

Output

- ST 3

...--a----

ypassed

.

:
Slow FPU
B passed

B:

Output
(b) With Passthrough

(a) Without Passthrough

Figure 5: Instructions approximated using a lookup table (a)
without passthrough and (b) with the passthrough support.

. |
s B Y.
! Hit L

----- Detect p,
H Hit enable

Figure 6: Check of match quality across threads in warp to en-
able passthrough.

accuracy and performance/energy. Higher error tolerance results in
better acceleration and energy savings.

Figure 4(a) shows associative memory used to reduce energy
consumption of an FPU [30]. This configuration places the lookup
table adjacent to the first stage of the FPU as the search operation
takes one cycle. When a match is detected, the FPU stages for the
operation are clock gated to save power and the output is used rather
than recomputing the value. This approach only checks one oper-
ation at a time, preventing application acceleration. ARGA uses
multiple lookup tables before the FPU pipeline to search incom-
ing instructions in parallel. Figures 4(b) shows the implementation
of ARGA. To accelerate applications, we use multi-table parallel
lookup, an architecture which compares multiple inputs in lookup
tables simultaneously. The lookup table is placed outside the FPU.
Incoming operations are stored in a queue before the FPU. Up to 5
of the inputs are searched for in the lookup table at the same time.
The state of matches can be one of two states. (i) If one or more
searches results in a hit, the stored value associated with the match
is output by ARGA. All matched operations are removed from the
queue and the remaining ones are moved to the checked queue. (ii) If
no matches are detected, values that received the passthrough signal
are removed from the queue and the rest are moved to the checked
queue. Values in the queue are processed sequentially. As the queue
fills, we disable lookup tables to avoid overflows.

The lookup table hit rate has a huge impact on the performance of
ARGA. Hit rate is impacted by the level of approximation allowed
and the size of the LUT. If three values are processed in parallel and
2 can be approximated, the performance increases by 3. However,

if the hit rate is low and all three miss, the performance remains the
same, but the search operation increases overall energy consumption.
The number of lookup tables enabled is adjustable. Each core has
multiple tables, but the exact number represents a design trade-off.
Additional tables improve acceleration but increase power draw. One
method we use to improve our energy savings is to utilize multiple
tables, but disable some during periods of low hit rate. As the number
of good matches decreases, the checked queue will become full and
additional tables are disabled.

3.3 Warp Passthrough

In GPU, instruction threads run in groups called warps. Each core is
assigned the same instruction and all operations run in lockstep on a
warp. This creates a problem where a single poor match in one of the
cores may prevent the entire warp from accelerating that instruction.
This is highlighted in Figure 5a, where 3 of the 16 cores bottleneck
the operation. Here, individual operations have a higher error than
the rest in the warp, but the overall warp error remains low. These
operations are computed on exact hardware, increasing energy costs
and preventing application acceleration. In order to accelerate the
instruction, all operations must be accelerated.

We propose warp passthrough, a scheme which identifies warps
with high overall match rates and accelerates them in spite of a
few poor matches. Figure 5b shows the same process in which
passthrough is enabled. Instead of waiting on a small number of
threads to compute on the FPU, all threads in the warp use the result
produced by the approximate lookup. This, combined with multi-
table parallel lookup, enables ARGA to accelerate applications. As
shown in Figure 6 each core in a warp outputs a signal identifying
the result produced by the lookup table as either a good or bad
match. If a majority of cores identified good matches, it outputs a
passthrough enable signal back to the cores. The cores with poor
matches send the operation to be computed on exact FPU. The results
of the exact operations then update the lookup table using a Least
Recently Used (LRU) policy to ensure the most recently computed
values are populating the table. Finally, the computed results are
reordered and placed in the result buffer.

3.4 Dynamic Updates

Prior work used static tables in order to enable computational reuse [15,
16]. A static table is loaded, prior to runtime, with a set of previously
identified common values. To collect these common values, a devel-
oper must profile each application and collect the inputs and outputs
for each operation. These values are sorted by frequency and the
most common are loaded into the associative memory. Using this
approach for practical applications results in very low hit rate. For
example, images taking during the day have lighter backgrounds,
while images taken at night have darker backgrounds. Similarly,
the background color may change depending on the season. When
processed by a GPU, a single image may have high redundancy, but
across two images there may be few similarities. Storing all these
possibilities in small static table results in very poor matching.
ARGA is able to update dynamically in order to provide more
hits and better matches, leading to better energy savings and im-
proved performance over static lookup tables. ARGA eliminates the
pre-profiling step. The values in associative memory are updated
regularly using an LRU policy to replace old values. In ARGA, the
maximum match distance is adjustable by the user and poor matches
exceeding this distance are placed in the FPU queue to be computed
exactly. The result calculated by the FPU updates the lookup table.
Unlike static tables, dynamic updates can cover previously unseen

User/App Inputs Multi-Table Lookup

Accuracy
Requirement __ APPS

ARGA Configurator

Warp Passthrough
Off Core
Passthrough Check
ew Misses in

Warp?
Output to Result
Buffer l No
Dynamic Lookup
Table Update 100 ;’:5’“‘“

Dynamic Update

Match

Figure 7: The steps for processing incoming operations.

applications without the need for profiling. One possible disadvan-
tage of the dynamic table is its frequent write operation which can
increase the cost of computation. ARGA addresses this issue by
enabling long-term write operations which enable table updates with
low cost of write energy. In Section 4.2 we explore the impact of the
proposed dynamic update on lookup table hit rate.

3.5 ARGA Framework

Figure 7 shows the computation flow of ARGA processing incoming
data for an application. The user configures ARGA based on the
application and its accuracy requirements. The user sets the maxi-
mum match error allowed, with higher values translating to faster
performance and energy savings, but worse accuracy. A user ad-
justs this value to find the optimal configuration per application. At
runtime, the application reaches sections of code with arithmetic
operations such as multiplier or adder. Lookup tables store the inputs
and the outputs computed in exact hardware for recent operations.
Incoming inputs are compared to stored values in the table and the
nearest distance match is identified. If a match is close, the inputs
are removed from the input buffer set and the result stored in ARGA
is output to the result buffer. If a close match is not found, the over-
all miss count of the warp is examined. If a fraction of the cores
within a warp do not pass through, a passthrough signal is sent to
the passthrough block. In this event, all matches will be sent through
the block, even inaccurate ones. If a high fraction of the cores do
not provide matches, then these poor matches will be sent to the
checked queue and run on the FPU. Finally, The results of these
computations are used to update the lookup table contents through
LRU replacement.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

To simulate ARGA, we use a modified version of Multi2sim [31], a
cycle accurate CPU-GPU simulator. The kernel code is modified to
implement the proposed design and enable runtime simulation. To
show the generality of our approach, we apply ARGA to two GPU
architectures: an Nvidia Kepler GeForce GTX Titan and an AMD
Southern Island Radeon HD 7970 device. ARGA is implemented
next to the FPU within each of the cores in the GPUs. We implement
ARGA for the GPU FPU operations which make up the majority of
computation within the tested applications; adder (ADD), multiplier
(MUL), and multiply accumulator (MAC). The associative memory
used in ARGA is simulated using HSPICE in 45-nm technology
with a 1V supply voltage.

D
[=]

S
o

N
o

Hitrate
Improvement (%)

o

\\ \§) N
') @ mea“ ﬁa“‘)‘op“\a\“"‘““sca\a‘wo F’ﬂ‘-"wa\s

Figure 8: Lookup hitrate improvement using dynamic table.

[- 16 Rows I 32 Rows [| NR_U_N?|

o
S
I

Hitrate (%)
@

Energy Efficiency
Improvement
S

0 0

“ 05 V%, W 508 st 00 0\ o0P W 508 sk
w SePC) ey ol a\a“’ ps? w PRl erCid ety o a\a“’\;a AN

(@) (b)
Figure 9: a) The hit rate on ARGA in tested applications and b)
the energy improvement for error less than 5%.

I o-Hit [0 1-+ie [2-Hit |:|3—Hit [4-Hit []5-Hit

I

AT bl gl a0l el .\:a’ﬂ 11‘3@ 1a’ﬂ‘° 1:70“‘ ool
(a) (b)
Figure 10: Comparison (a) ratio of hits for increasing the num-
ber of tables and (b) the speedup provided for MatrixMul

9 Lo

1 g

" b=l

5

¥ g 25|
(]

We test the design on Kepler using 3 applications from the
m2s-bench-cudasdk-6.5 [31], MatrixMul, FastWalshTransform, and
ScalarProduct. For these benchmarks, we use L1/L.2 Norm for our
accuracy metric. For Southern Island we examine 3 benchmarks
from the Rodinia 3.1 machine learning benchmark suite [29], Back-
propagation, K-nearest neighbor, and Kmeans. For these applica-
tions, we select average relative error for our accuracy metric. We
test the impact of ARGA on a CNN, LeNetz-5 [32], compiled to run
on Multi2Sim. The CNN classifies 32x32 pixel images of hand-
written digit characters from the MNIST dataset [33]. The LeNet-5
network is trained with 60K training images, and it provides accurate
classification for about 97% of 10K tested image samples.

4.2 Dynamic Updating and ARGA Configuration

Figure 8 shows the improvement ARGA provides over a design
using a static lookup table[30]. For the tested applications, using
a dynamic lookup table provides an average of 22% better hitrate
compared to a fixed table using approximate matches of less than
5% error. More matches allow better energy savings and better
performance improvements for each application. The number of
entries per table (size of a lookup table) impacts ARGA accuracy
and efficiency. Increasing the number of entries results in higher
hit rates and therefore better performance and energy savings. This
comes at the cost of search energy. Larger tables require more energy
and time to search and identify the closest match. Figure 9 compares
tables ranging from 16 to 64 entries. On average a table size of 32
rows provides better reuse rate than the 16-row table without the

100 ; ‘ ‘
{ go! [EMAccelerated -O-Error| [
2% 60 2
s S o
=9 40 £
Q I
o
g2
0
No.n\reads 4 rwead prred® o aresd® qyceads
Maximum Match Error
Figure 11: Warps accelerated by ARGA using warp

passthrough and the change in output accuracy for ScalarProd

excessive power draw of the 64-row table. Further results use ARGA
with 32 rows for analysis.

4.3 Multi-Table Parallel Lookup

Using more than one table allows ARGA to accelerate applications.
We examine the trade-offs associated with increasing the number
of lookup tables. More tables increase the area overhead and power
consumption of ARGA. Figure 10 shows acceleration as the number
of tables increases for the MatrixMultiply application with less than
5% error. The application has an overall hit rate of 86%. If 5 tables
are used, 49% of checks result in all 5 tables identifying a close
match, while the remaining 37% have 4 matches or fewer. Each
miss must be computed on exact hardware and prevents speedup.
Additional tables provided decreased benefits to performance as the
percentage of operations making use of all tables decreases.

4.4 Warp passthrough

We show the acceleration improvement provided by warp pass
through. We start without passthrough enabled and show the accu-
racy and performance improvements. Figure 11 shows the bottleneck
of threads for the ScalarProduct application. Considered individu-
ally, 84% of the operations in the application can be approximated
with less than 5% error. However, the warps are bottlenecked, so only
30% can be accelerated. By allowing passthrough for when a single
thread produces a poor match, we can accelerate 65% of threads.
Although passthrough violates the amount of accuracy which ARGA
ensures, it can be used to significantly accelerate the computation.

4.5 Energy Reduction and Acceleration

ARGA provides significant improvements to both acceleration and
energy reduction for the tested applications. Figure 12 shows the
improvement ARGA provides over an unmodified GPU. As the
maximum allowable error per operation is increased, the application
finds more matches within ARGA. The performance increases with
hit rate, but overall output error also increases. Across the 6 tested
applications we show a 2.7 x speedup and 5.3 EDP improvement
while providing less than 5% application error. Figure 13 shows
the output of the K-means application. In this example, 91% of the
operations are approximate using ARGA, resulting in only 1.1%
classification error compared to one run on exact hardware only.

4.6 Convolutional Neural Network

In this section, we show the improvement ARGA can provide on a
neural network application. Table 1 shows the speedup and energy
savings provided to a NN using ARGA. Compared to the other
applications tested, the neural network [32] is much more tolerant
to error. The maximum match error can be increased to 25% before
significantly impacting output accuracy. We see a rapid drop off in
classification accuracy, rather than a linear change as shown by the
other applications. For a decrease in classification accuracy of 0.8%,

(==

o

Energy/EDP
Improvement
N »

o

e 05 0Pt .‘,\s;\\l E“p\GE

A
()
wme?’ o cke Wt Sca\a“" ot

Figure 12: Speedup and EDP improvement provided by ARGA
for 6 GPGPU applications.

o4

[k}

°%s (] 0.4 06 [10 °%s (] 0.4 06 [Lo
(a) Exact (b) Approx
Figure 13: Visual comparison of output for K-means application

running on (a) exact hardware only, (b) ARGA in approximate
mode resulting in 1.1% error.

Table 1: Impact of ARGA maximum operation error on the
CNN accuracy and efficiency.

Operation Max Error ‘ Exact 5% 10% 25% 50% 100%

Classification Accuracy | 97.4% 97.4% 97.0% 96.6% 89.6% 13.8%
Hit rate 23.4% 482% 61.9% 751% 81.4% 99.8%
Speedup 1.2x 1.5x% 1.7x 2.1x 2.5x% 2.8x

EDP Improvement 1.2x 1.9%x 2.6x 3.7x 5.2% 6.9

we are able to approximate and accelerate 75.1% of the arithmetic
operations. We show a 2.1x speedup and 3.7 x EDP improvement.

4.7 Overhead

Here we estimate the overhead of ARGA. The overhead is directly
related to the size and the number of lookup tables. Based on our
evaluation, ARGA requires five lookup tables with 32-rows in or-
der to provide maximum efficiency. Each lookup table block is a
conventional crossbar memory with the nearest search capability.
Crossbar memories are transistor-free memories which consist of
two memristor devices (0T-2R) [34]. This memory blocks can be
integrated at the top of CMOS-based logic with minor area overhead
which comes from the sense amplifier. Each floating point multiplier
takes 7890um? of area. Therefore, it can fit up to six lookup tables
at the top. Since other floating point units take less area, they can
fit fewer lookup tables. For example, floating point addition can fit
four lookup tables at the top. Considering the overall GPU area, we
observe that ARGA using five lookup tables next to each FPGA adds
less than 3.8% area overhead to the existing GPU architecture.

S CONCLUSION

In this paper, we present ARGA, a lookup-based approximate com-
puting technique capable of accelerating GPGPU applications. We
avoid redundant computations through the use of associative mem-
ory lookups. ARGA exploits the temporal locality of applications
in order to avoid computing instructions with identical or similar
values. We show multi-table parallel lookup speeds up GPGPU
computation significantly. We also propose warp passthrough and
dynamic lookup table to avoid lockstep in GPU warps and improve

the lookup table hit rates respectively. We show our design improves
performance throughput by up to 2.7x and improves EDP by 5.3 x
for 6 GPGPU applications while maintaining less than 5% output
error.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six centers in
JUMP, an SRC program sponsored by DARPA, and also NSF grants
#1730158 and #1527034.

REFERENCES

[1] C.Dobre and F. Xhafa, “Intelligent services for big data science,” Future Genera-
tion Computer Systems, vol. 37, pp. 267-281, 07 2014.

[2] V. C. Storey and L.-Y. Song, “Big data technologies and management: What
conceptual modeling can do,” Data Knowledge Engineering, vol. 108, pp. 50 —
67,2017.

[3] J.Han et al., “Approximate computing: An emerging paradigm for energy-efficient
design,” in [EEE ETS, pp. 1-6, IEEE, 2013.

[4] C.Liu et al., “A low-power, high-performance approximate multiplier with con-
figurable partial error recovery,” in IEEE/ACM DATE, p. 95, IEEE, 2014.

[5] S.Hashemi et al., “Drum: A dynamic range unbiased multiplier for approximate
applications,” in IEEE/ACM ICCAD, pp. 418-425, IEEE Press, 2015.

[6] Y. Kim et al., “Efficient human activity recognition using hyperdimensional
computing,” in ICIOT, p. 38, ACM, 2018.

[7] M. Imani et al., “Rapidnn: In-memory deep neural network acceleration frame-
work,” arXiv preprint arXiv:1806.05794, 2018.

[8] S. Salamat er al., “Rnsnet: In-memory neural network acceleration using residue
number system,” in ICRC, pp. 1-10, IEEE, 2018.

[9] M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in CLOUD, pp. 1-6, IEEE, 2019.

[10] Y. Kim et al., “Orchard: Visual object recognition accelerator based on approxi-
mate in-memory processing,” in ICCAD, pp. 25-32, IEEE, 2017.

[11] S. Salamat er al., “F5-hd: Fast flexible fpga-based framework for refreshing
hyperdimensional computing,” in FPGA, pp. 53-62, ACM, 2019.

[12] T.C. etal., “A high-throughput neural network accelerator,” IEEE Micro, vol. 35,
pp. 24-32, May 2015.

[13] W.e.a.Liu, “A survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, 12 2016.

[14] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architec-
tures for scalable image recognition,” CoRR, vol. abs/1707.07012, 2017.

[15] M. Imani et al., “Resistive configurable associative memory for approximate
computing,” in DATE, pp. 1327-1332, IEEE, 2016.

[16] A. Rahimi et al., “Approximate associative memristive memory for energy-
efficient gpus,” in DATE, pp. 1497-1502, IEEE, 2015.

[17] M. Imani et al., “Approximate computing using multiple-access single-charge
associative memory,” IETC, vol. 6, no. 3, pp. 305-316, 2018.

[18] P. K. Krause et al., “Adaptive voltage over-scaling for resilient applications,” in
DATE, pp. 1-6, IEEE, 2011.

[19] A.B. Kahng er al., “Slack redistribution for graceful degradation under voltage
overscaling,” ASPDAC ’10, pp. 825-831, IEEE Press, 2010.

[20] V. K. Chippa et al., “Scalable effort hardware design,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, pp. 2004-2016, Sept 2014.

[21] M. Imani et al., “Cfpu: Configurable floating point multiplier for energy-efficient
computing,” in Design Automation Conference 2017, p. 76, ACM, 2017.

[22] M. Imani et al., “Rmac: Runtime configurable floating point multiplier for approx-
imate computing,” in ISLPED, p. 12, ACM, 2018.

[23] X.e. a. Jiao, “Energy-efficient neural networks using approximate computation
reuse,” in DATE, 2018, pp. 1223-1228, IEEE, 2018.

[24] D. Peroni, M. Imani, and T. Rosing, “Alook: adaptive lookup for GPGPU acceler-
ation,” in ASPDAC 2019, Tokyo, Japan, pp. 739-746, 2019.

[25] I. H. et al., “Quantized neural networks: Training neural networks with low
precision weights and activations,” CoRR, vol. abs/1609.07061, 2016.

[26] P. M. et al., “Mixed precision training,” CoRR, vol. abs/1710.03740, 2017.

[27] M. S. Razlighi et al., “Looknn: Neural network with no multiplication,” in Proceed-
ings of the Conference on Design, Automation & Test in Europe, pp. 1779-1784,
IEEE/ACM, 2017.

[28] M. Imani et al., “Acam: Approximate computing based on adaptive associative
memory with online learning,” in /JEEE/ACM ISLPED, pp. 162-167, 2016.

[29] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,” in
Workload Characterization, 2009. IISWC 2009., pp. 44-54, Ieee, 2009.

[30] M. Imani et al., “Program acceleration using nearest distance associative search,”
in ISQED, pp. 43-48, IEEE, 2018.

[31] X. Gong, R. Ubal, and D. Kaeli, “Multi2sim kepler: A detailed architectural gpu
simulator,” in (ISPASS), pp. 269-278, April 2017.

[32] Y. e.a. LeCun, “Gradient-based learning applied to document recognition,” Pro-

ceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,” AT&T

Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[34] M. Imani et al., “Approximate computing using multiple-access single-charge
associative memory,” I[EEE TETC, 2016.

[33

